Thursday, May 11, 2017

The rebelde Regulator

***The rebelde Regulator


After the brief announcement of the rebelde Watchmaker's Regulator clock, a couple of subscribers got excited saying this is exactly what they'd planned to do themselves. I am not surprised: the regulator project is the pinnacle of every model engineer hobbyist. 
Having an extremely accurate clock running quietly on your wall is a magical experience - and the bragging rights of 'I made it myself' are simply priceless. Even those non-technical and most critical friends will simply remain silent while admiring your craftsmanship. And unlike model train engines, the clock will be final proof to your wife that your investment in lathes and mills was clearly a wise decision.

The design and drawings of the rebelde regulator are almost completed. Now, if you think that this is not a big deal – due to our CAD software and the abundance of information online surely the task is straightforward - then you are mistaken. For the past 400 years each and every clockmaker and watchmaker personalised the design to suit their own understanding of what the regulator really is - or more commonly, to design it in a way that could be manufactured in their own workshop using their own tools. The end result is always more of alchemy and witchcraft than a mechanical engineering 'recipe', which consequently makes the execution of the clock incomprehensible to engineers (yet so easy to true clockmakers!).

Indeed - I have already found reasons to modify and 'improve' - before I have even made the first component. I am blessed with no less than 3 books on regulators so at least I am not wasting time searching online, but even acclaimed authors make common mistakes: assuming the reader is familiar with a method or design just because they think it’s 'trivial'. And my goodness - imperial dimensions just drive me nuts!

Again, clock mechanisms have their own uniqueness so most engineers struggle with the different concepts of maintaining power, cycloidal gears and dead-beat escapement, and are overly concerned with tight tolerances in the wrong places. So as a repairman, I do have the small advantage of having seen so many clocks in repair and have seen various attempts to solve the various problems, where some were better than others. This is why I believe the rebelde clock would not only perform as it should, but my drawings and design assumes no previous knowledge - which would make them perfectly suitable to Josh and Tyler. And I would most likely make them available to general public. Nevertheless, I am not going to rush ahead here.

The next to do list: getting ready for pinion cutting! The cutters are here, but I need a precise indexing head. The commercially available indexers and chucks are abundant; however I want to build my own. Why? Because home-made indexers are cool. My indexing head will be driven by a stepper motor, controlled by an Arduino chip and will have an (almost!) unlimited number of indexing steps - you can cut a 1200 teeth wheel if you want to! I am already testing a bunch of NEMA motors, and while my coding is rusty they are already 'stepping' nicely.

Stay tuned for more!
Happy collecting,
Nick

No comments: